FPGA-Based Predictive Control System for Spacecraft Rendezvous in Elliptical Orbits

نویسندگان

  • Edward N. Hartley
  • Jan M. Maciejowski
چکیده

A field programmable gate array (FPGA)-based model predictive controller (MPC) for two phases of spacecraft rendezvous is presented. Linear time varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longerrange manœuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze, and could be competitive with a pure custom hardware implementation. Copyright c © 2014 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits

The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...

متن کامل

Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories

The present article proposes a predictive control law for orbital spacecraft rendezvous hovering phases. An innovative description of periodic spacerestricted trajectories based on computing the envelope of a family of curves is given. This description is used to provide a model predictive controller able to minimize the fuel consumption and account convex constraints, such as periodicity, satu...

متن کامل

Pulse-Width Predictive Control for LTV Systems with Application to Spacecraft Rendezvous

This work presents a model predictive controller (MPC) that is able to handle linear time-varying (LTV) plants with PWM control. The MPC is based on a planner that employs a PAM or impulsive approximation as a hot-start and then uses explicit linearization around successive PWM solutions for rapidly improving the solution by means of linear programming. As an example, the problem of rendezvous ...

متن کامل

High Accuracy Relative Motion of Spacecraft Using Linearized Time-Varying J2-Perturbed Terms

This paper presents a set of linearized equations was derived for the motion, relative to an elliptical reference orbit, of an object influenced by J2 perturbation terms. Approximate solution for simulations was used to compare these equations and the linearized keplerian equations to the exact equations. The inclusion of the linearized perturbations in the derived equations increased the high ...

متن کامل

Control of Spacecraft in Proximity Orbits

Formation flying of spacecraft and autonomous rendezvous and docking of spacecraft are two missions in which satellites operate in close proximity and their relative trajectories are critically important. Both classes of missions rely on accurate dynamics models for fuel minimization and observance of strict constraints for preventing collisions and achieving mission objectives. This thesis pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014